

Cambridge International Examinations

International AS & A Level	Cambridge International Advanced Subsidiary	and Advanced Level
CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
COMPUTER S	CIENCE	9608/02
•	mental Problem-solving and Programming Skills	For Examination from 2015
SPECIMEN PA	PER	2 hours
Candidates ans	wer on the Question Paper.	
No Additional M	laterials are required.	
READ THESE	INSTRUCTIONS FIRST	

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

No marks will be awarded for using brand names for software packages or hardware.

No calculators allowed.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 16 printed pages.

Throughout the paper you will be asked to write either **pseudocode** or **program code**.

Complete the statement to say which high-level programming language you will use.

Programming language used:

1 A program is to be written to enter and display the result of a cricket match. The winning team is the one scoring the most runs.

The structured English description of the problem is shown here. It assumes the scores are not equal.

INPUT HomeTeamName
INPUT HomeRuns
INPUT AwayTeamName
INPUT AwayRuns
SUBTRACT AwaysRuns FROM HomeRuns STORE AS RunDifference
CALCULATE the winning team STORE AS WinningTeamName
OUTPUT WinningTeamName and RunDifference

Typical output is shown.

```
Chargers
123
Tigers
136
Winning team was Tigers who scored 13 more runs
```

Write program code from this structured English.	
	······
	······
	······
	[9]

2 A lottery game draws six numbers between 1 and 50, which are all different.

A computer program is to be developed to simulate the drawing of the six numbers.

A built-in function is available ${\tt RND}\,(\tt)$ which generates a random number between 0 and 0.99999999

The incomplete algorithm which follows takes no account of the numbers generated each time, so duplicates are possible.

(a) (i) Complete the entries in the table.

Identifier	Data Type	Explanation
Counter		Loop counter
NextNumber	INTEGER	

(ii) Complete the pseudocode using the identifiers.

FOR

NextNumber
OUTPUT NextNumber

OUTPUT "That completes the draw"

(b) Write program code for your completed algorithm for part (a)(ii).

nuı	ne algorithm must be extended so that duplicate numbers are identified; that is, when a sumber is drawn which has already been drawn, the latest selection is ignored. The program on tinues until six different numbers are generated.			
(i)	Explain why a F	OR loop structure is no longe	r suitable.	
			[1]	
(ii)		seudocode, the structure yerithm in part (a)(ii).	ou will replace it with. Do not attempt to	
			[1]	
The pro	ogram designer d	ecides on the method to ider	ntify duplicates. An array is used with upper	
bound has bee	50. For example, en drawn.		37 indicates whether or not the number 37	
bound has bee	50. For example, en drawn.	the array cell with subscript	37 indicates whether or not the number 37 Description	
bound has bee	50. For example, en drawn.	the array cell with subscript I are defined here:		
bound has bee	50. For example, en drawn. riables to be used Identifier	the array cell with subscript I are defined here: Data Type	Description FALSE – indicates the number has not yet been drawn TRUE – indicates the number has been	
bound has been The van Number	50. For example, en drawn. riables to be used Identifier erDrawn	the array cell with subscript I are defined here: Data Type ARRAY[50]: BOOLEAN INTEGER ode to initialise the Number:	Description FALSE – indicates the number has not yet been drawn TRUE – indicates the number has been drawn	
Number	50. For example, en drawn. riables to be used Identifier erDrawn Write pseudoc InitialiseNo	the array cell with subscript lare defined here: Data Type ARRAY[50]: BOOLEAN INTEGER ode to initialise the Numbers umberDrawn.	Description FALSE – indicates the number has not yet been drawn TRUE – indicates the number has been drawn used as the subscript/index for the array	

[3]

(iv) Complete the **pseudocode** to generate the six different numbers. The programmer has previously written a user-defined function <code>GenerateNumber</code> to generate a number between 1 and 50. This function is used in the algorithm.

Identifier	Data Type	Description	
Generated	INTEGER	count of the number of different numbers drawn	

CALL InitialiseNumberDrawn
Generated ← 0
// start of loop
NextNumber ← GenerateNumber()
IF NumberDrawn [] =
THEN
OUTPUT NextNumber
Generated ←
NumberDrawn [] \leftarrow
ENDIF
// end of loop
OUTPUT "That completes the draw" [6]

(v) Using the table, show the contents of the NumberDrawn array after the pseudocode in **part (iv)** is partially run and the loop has iterated five times, generating the number sequence 3, 47, 9, 47, 42.

	NumberDrawn
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	

[3]

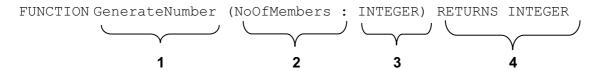
[Turn over

(vi) Write the sequence of output from these five iterations.

[1]

9608/02/SP/15

© UCLES 2012


3 A football club is owned by its fans and currently has 3089 members. The data about members is held in a file MEMBERS. DAT. Each member is given a member number.

For each of the 23 home games, there is a prize draw with the member drawn gifted \$100.

Once a member is a winner, they cannot win again.

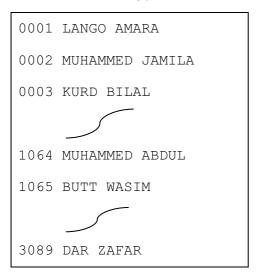
The lucky member number is to be selected each week by a computer program. Hence, for the draw for the first week, it will generate a member number between 1 and 3089.

(a) The programmer will code a user-defined function GenerateNumber with this function header.

(i) Explain the various parts of the function header.

1
2.
3.
4.
[4
This statement is used in the pseudocode.
PossibleWinner ← GenerateNumber(3089)
Explain this statement.

© UCLES 2012 9608/02/SP/15


(ii)

The ${\tt MEMBERS}$. ${\tt DAT}$ file is a text file with the following structure.

Each member's data is a single line of text, consisting of:

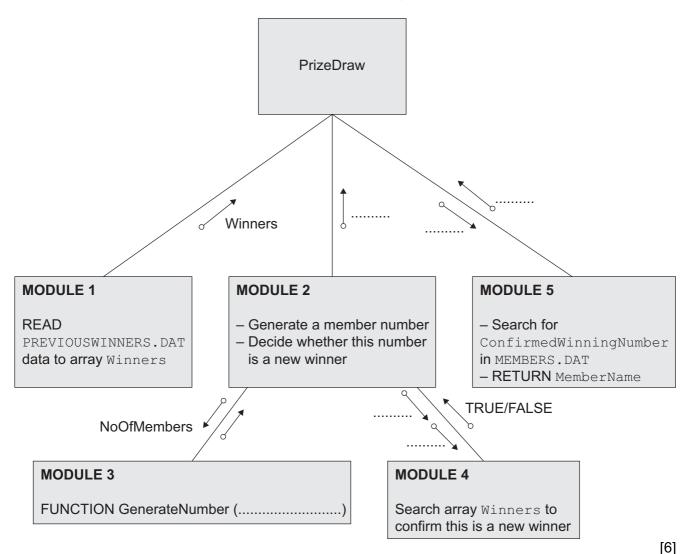
- four characters for the member number (fixed length)
- a <Space> character
- member name (variable length).

MEMBERS.DAT

A second serial file PREVIOUSWINNERS.DAT stores the member numbers of all past winners. The diagram shows the file after five home games.

PREVIOUSWINNERS.DAT

3011 0089 1067 0865 0719


(a)	Explain why these winners data must be stored in a file.
	[0]

(c) An initial program specification is shown by the structure chart.

The programmer uses the identifier table shown here.

Identifier	Data Type	Description
PREVIOUSWINNERS.DAT	TEXT FILE	Text file storing the member numbers of all previous winners
Winners	ARRAY[4000] : STRING	Array to store the four-character member number
PossibleWinner	INTEGER	The new number generated for this draw (the program will check it has not been a previous winner)
ConfirmedWinningNumber INTEGER		After the check, we can confirm it has not been drawn already. It has the same value as PossibleWinner

Complete the structure chart. There are **six** missing pieces of information.

(d) For MODULE 1, the programmer writes pseudocode as follows:

PROCEDURE ReadPreviousWinnersFile
OPENFILE PREVIOUSWINNERS.DAT FOR INPUT
REPEAT
READ line of text and store at next position in array Winners
UNTIL end of the file
OUTPUT "File contents now read to array"
ENDPROCEDURE

(i) Show any other variable(s) which you need to add to the table given in **part (c)** to code the procedure.

Identifier	Data Type	Description	

[3]

(ii) Write program code to implement this procedure ReadPreviousWinnersFile.

(e) As each member's data is a line of text, it will be stored by the program. The program uses it as a string.

Assume the programming language has built-in functions defined as follows:

LEFT (ThisString: STRING, Number: INTEGER) RETURNS STRING

Returns the given number of characters from ThisString starting with the first character.

RIGHT (ThisString: STRING, Number: INTEGER) RETURNS STRING

Returns the given number of characters from ThisString starting counting from the final character and moving left.

MID(ThisString: STRING, Number1: INTEGER, Number2: INTEGER)

RETURNS STRING

Returns a sub-string of ThisString as follows: starts at position Number1 and then retains Number2 characters.

LEN (This String: STRING) RETURNS INTEGER

Returns the number of characters in ThisString.

Assume the first line from the MEMBERS. DAT file was stored by a program as:

MemberData ← "0001 LANGO AMARA"

Using the functions given, write statements to do the following:

(i) Calculate the length of the string.

(iii) Extract the member name.

MemberName ← [1]

4 A student writes some code which uses ASCII character codes.

Character	Denary	Character	Denary	Character	Denary
		I	73	R	82
А	65	J	74	S	83
В	66	K	75	Т	84
С	67	L	76	U	85
D	68	М	77	V	86
E	69	N	78	W	87
F	70	0	79	X	88
G	71	Р	80	Y	89
Н	72	Q	81	Z	90

Assume the programming language has these built-in functions available.

CHR (ThisNumber: INTEGER) RETURNS CHAR

ThisNumber is the denary ASCII code for the character returned by the function.

E.g. CHR (65) returns 'A'.

ASC (ThisCharacter: CHAR) RETURNS INTEGER

The function returns the denary ASCII value of the character ThisCharacter.

E.g. ASC('A') returns 65.

- (a) What is the value of these expressions?
 - (i) CHR (80)

[1]

(ii) ASC('J') + 13

[1

(b) What is the value of the variable Answer, following the execution of these two statements?

Answer = _____[1]

(c) The student is interested in how simple encryption could be applied to a text message.

One of the simplest forms of encryption is a method of 'substitution' where each character has a unique substitute character.

The student uses this method with the following character substitutions:

Message character	А	В	С	D	E	F	G	Н	I	J	K	L	М
Substitute character	Р	L	F	N	0	С	Q	U	D	Z	V	G	I

N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z
Χ	М	W	J	В	K	E	А	Н	S	Y	R	Т

Assume all messages are made up from the upper-case characters only.

Show the string after the message ATSEVEN is encrypted.	
	[1]
	נין

(d) The program inputs a message string from the keyboard, stored in the variable MessageString.

Identifier	Data Type	Description			
MessageString	STRING	message string input by the user			
LengthMessageString	INTEGER	the number of characters in MessageString			
Alphabet	ARRAY[26]: CHAR	the alphabet of upper case characters in order			
Substitute	ARRAY[26]: CHAR	the substitute character for each character in the Alphabet array.			

(i)		rogramming language allows reference to individual characters, starting with index he first character.
	E.g.	MessageString ← "YESICAN"
		<pre>MessageString[3] = 'S'</pre>
	string	the algorithm in pseudocode to input a message string and output the encrypted. Your algorithm will search the Alphabet array for each of the characters in ageString.
	You n	nay need to use additional variables to those already given in the identifier table.

		[10]
		[10]

ii)	Describe a more efficient algorithm to the one written in part (i) .
	[2

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.